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Editor's note:

Dr, Bade, who joined this project early in June, 1954, had

g; to leave us in September pursuant to action of his draft board.

» The present report, while not in 2s complete a shape as Dr. Bade
;.é would wish, nevertheless contains a number of contributions and

e - theorems of value for hydromagnetic thecry. (W. M. E.)
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1. Introduction

The geomagnetic secular variations may ce attributed to the
distortion of pre-existing magnetic fields in the earth's core by
upwslling nctions of the fluld toward the core-mantle boundary
(Elsasser, 1950). The purpose of the work reported here is to
compute the hydrbmagnetic effects of such an upwelling. The main
problem 1is to determine the effecté at the surface of the core,
since the fleld in the mantle is a solution of V?§~= O determined
by the boundary coanditions at the surface of the core and at
infinity.

Hydrcmagnetic effects in a homogeneons conducting fluild

*
are described by the equation

3B, _ 2
st = Vx (yxB)+v B, (1)

where as usual Vo= Q«o)_*. It will be assumed that ¥, .X(ﬁ)

is a given stationary velocity field; we are not concerned with

the problem of the ponderomotive reaction of the field on the fluid

motion. Egquation (1) is in general difficult to solve exactly.

Here a rather crude approximation 1s adopted. Instead of letting

the induction term V x (v x B) and the diffusion term va B act
——— A 1 A

et

*Ne use the rationalized mks system, see Elsasser (1954)
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concurrently on the fisld B, we let them act consecutively. That

is, the problem is to be solved aprroximately in two steps:

1. The magnetic viscosity v, 1is set eqgual to zero and the

fluid motion y 1s permitted to operate on the f£la2ld ror a time t.

3
{

2. The fluid motion is stopped and diffusion i1s permitted

AT Y

to act for an ejqual time t on the field which was produced by the
fiuld motion in step 1.
H The final field resulting from these two steps 1s taksn as

an approximetion to the field which would be produced by the

¥ simultaneous action of induction and diffusion for a time t.

In view of the unprecise nature of the ne thod used for

solving equation (1), and since the upwelling should be fairly

well localized, 1t woculd be pointless to complicate the problem

st ety A AL T b AR A ohe S AL

by working in spherical cocrdinates. Instead,; the surface of the

core will be represented by the infinite plane z = Q: the core

AN s e it e e

. fluid will be assumed to occupy the region z £ 0, the mantle the
region z > 0.

The local rectangular coordinate system 1s taken with the

z-gxls upward and the x-axis pointing south. Two types of pre-

A o

existing fields, uron which the induction process acts, will be

T
S T

conslidered:

"&
i
e g o

l. A poloidal dipole field willl appear In the local

ittt

system as a uniform field

) by = =B sin Y, by =0, b, = -Bcosy. (2a)

< Here W is the angle bstween the positive z-axls and the direction

:‘:57‘ -

ﬁﬁ of the vector -hs Y 1s positive in the northern hemisphere.

o

‘gg Assuming that the fleld is due to a dipole of moment a located at
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the earth's center and directed torerd the south pole,

B =ar 91 +3 00826)1/2

sinyp = (1 + 3 c0s26)=1/251n o (3)

cos\y = 2(1 + 3 c0s20)"1/2cos 6.
Here r 1s the radius of the core and © 1s the colatitude from the
north pole of the point under consideration. In the local

cylindrical coordinate system, the dipole fleld becomes

b = =B sin\fz cos ‘Po

P
bp = B sin P sin @ (2b)
b, = =B cos .

IT. A toroidal field in the y-direction woculd be repre-

sented in general by

2
Y
b, =b, =0, b =Bsinkz, e KVt

ags can be shovn by separation of variables in (1), with v = 0 and
the bourdary condition EA= O on the surface Zs ' 0. If kx = 0O,

the sclution reduces to

b, = b _= 0, by = Bz, (4a)
This last form 1s the one which will be used here. It should be
a good enough approximtion to the general solution near the sur-

face of the tore. It is stable against diffusion. In local

cylindrical coordinates, (4a) becomes

bp =Pz, sing , b? = Pz, cos o, Db, = 0. (4b)

The poloidal d4vol® field (2b) can be derived fram the

vector potential
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a, = B{z sin oy =~ pycosy cos @,)sin @,
ag = B(zosint4j = Pycos cos ?o)cos fo (2¢)
a, = 0,
and the torcidal field (4b) can be derived from
8, = a? =0, a, = -pzopO cos @ {4c)

2. The Induction Problem

Parker (1954) has shown that the hydromagre tic induction
equation (1) (with Ym = 0) has a formal integral which is exactly
analogous to Cauchy's integral of Helmholtz's equation for the
verticity in hydrodynamics. 4 similar integral can easily be
' It is simplest to atart from

derived for the vector potential,

the integral theorem

& /Bas=o, (5a)
which inmplles that
g;'ﬁ'A dr = 0 (5b)
9

where the irtegration is along an arbitrary closed ya th.
d/dt denotes the substantial dsrivative, i.e. the surface or path
of integration is assumed to move with the fluid. It is convenient
to work in general coordinates, as this ensures that the results

will be valid in the curvilinear coordinates which will ve used in
the induction calculations. Equation (5b) becomes
( m L
.¢. \Amdx adeo) O,

whe re aL are the covariant components of the vector potential at
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the location xg of a given fluld particle 2t time (O, and Am are

thoss of the vector potentialut the locatioun x™ of the same fluid
! particle at time t. Iow
ox
dxé = dxm-—ﬁ%,
5 ox
Hence
ng
A-. —3 a, ——:: + —zg
jot L 3x™® m

n

where 4 is an arbitrary function of x', t. The gradient term will

contribute nothing to_§9 and can be omitted:

L
axo

a, "=

L 3x™

(6)

m

The Cauchy-Parker integral for B can be obtained either by

taking the curl of (6) or by direct calculation from (5a). The

latter me thod was used by Parker in his original derivation. Here

the former method will be used, as it is soumewhat shorter:?

A A\
/ . CA Un
¢ Bl = % 8“1/2 elikf X _ __&
axJ ox
m L m L
21 m1/2 gk Oa) |oxg x5 9% onl.
2 Bxg ax:T axk axK ijJ
Multiplying both sides by 3xP/ex' and utilizing the definition of
a determinant in terms cf the eijk9 one finds
) a, a
st o L 1/d %) om 28 a1 1/2 (ol /2 2
axt I axP ax® @ x> ox®  axt
B O + . o . o
Hence
. r
BT = % Ox_ P, (7a)
oxD .-
where
e \1/2 | 5xB
J ;(am) ,Eﬁa . (7b)
\E&o , Xq
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The quaatities bP are the contravariant components of the fleld at

~

. »id
the location xg of a given fluild particle at time O, and the B  are

r

those of the fieid at the location x° of the same particla at time t.

Let §1 be a system of Carteslan coordinates. Then
m

5 ax ax
and hence
lagll 4/
2. | = g%,
|ax1u|

Now the quantity Iagi/aggl is known in the Lagrangian form of hydro-
dynamics to have the value unity 1in case of incompressible flow.
This quantity is just J (7b):

6l | m| | ax®
5| - |3 125 1) (50 |

= J.

i
2

0:3

.OI

Hence J = 1 for 1incompresslible flow.
It will prove convenient to work in cylindrical coordi-

nates p, ¢, z, where (6) and (7) become

- apu : 3¢, = 3z .
P~ 3p o dp % 3p %z
ap p._. oy az
S ) g 'o 1l 7o
<A¢—T5T‘ap+pwa?*pwaz (8)

ap o oz
A, = + PO T e
L'Z“B""a Po 3z 8 T Tz 8,

_1fa 1 3 3p
(Bp = 3|5 Pe T RS Te; % 3z bZ]
- b .
{ Bo=§ %2_ + l~~3$L bg + %SL b (9)
_ 1faz 1 2z 3z
L B, == o b, * 5 s¢o by * 3;; bz].

The equations (6) to (8) are based on the Lagrangian form
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of hydrodynamics, in which the motion 1s dezcribed in terms of the

[
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2
trajectories xt = xi(on, t) of the individual fluid particles.
However, 1t 1s easler to investigate the character of the fluld

motion &8 a whole when using the Zuleriun method of velocity fields,

For this reason, we begin by using the latter method and shift over

i

to the Lagrangian viewpoint only when we have formulated the des- {
g

cription of a suitable fluid motion. It will be assumed that the . %
flow 1is incompressible, V . 0. <‘he formula for the divergence 5
in cylindrical coordinates is ?
1 1 ov ov, %

Tox=F 3 vy Y53 e

Hence g veloclity field defined by §
i

=-— )Z"v = =g- : ) i

o R(p ) Vo 0, v, 5 R (p)Z(z) (10) '

1s.a case of 1Incompressible flow exhibiting rotational symmetry
about the z-axis. Here azconstant and R and Z are arbitrary differ-
en tigble functions. Since Vo = 0, the streamlines all 1lie in
planes ® = constant. The equation of the streamlines is R(p)Z(z)

= constant. Since the fluild motion is steady, these stresmlines

are also the trajectories of the fluild particles,

e
ls and

In order to get a model which is physically reasonab

which matches the problem, it 1s necessary to impose some conditions

on the functions R, Z, It will be assumed that

L eaal

i. the fluld does not cross the surface z = 0y hence

v, = 0at z =0, or Z2(0) =

2. on the z-axis, there 1s no radial motionj hente

vy = 0 at p = 0, or % R(p)—™ 0 as p— 0.

These two assumctions are essential. One can also impose the less

important but still plausible assumptions that
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3. the only radial motion is the spreading-out as the

field approaches the plame z = Cy hence Ve = 0 at
z = =00, or Z'(=0) = O,

4. 1in any plane z = constant, the motion at large distances
from the point p = O resembles that from a point source,
hence vpnvﬁ'l at p = ©, or R(» ) = constant.

It is easy to find functions R,Z satisfying these conditions.

However, it 1is simplest not to specialize these functions at this
stage, but rather to carry the calculation through (approximately)
in terms of the symbols R, Z themsselves. We will use power secries

expansions in t, discarding terms of higher than the second degree.

From (10), in this arrroximation,

2 T =
Py =0 *ZRZ't + Zp lRR'Z'z-RR'ZZ"- & Rgz'f]tg

20 -
(11)
2, =z - 3 R'zt + £ [R'2_rR* + L RR'|22't2
and correspondingly
= a ' i 12 1 |21 2
P=p - f-RE'E ¥ alRR Z'2.Rr'zz" po R°Z i
%o : (12)
2
z =.z_+ I R'Zt +-—5R'2RB +%-RR'] 222
¢ Py o=+ P

In (11), R, Z and their derivatives are functions of the final
coordinates p, z of the particle; in (12), they are functiouns gf
the initial coordinates p,, z,. If one plans to use (8) in com-
puting the final field,E, one calculates the derivatives axoi/"c}xj
as functions of p, z directly from (11):

u

2
© -1 +2 (R'-LR)Z't + 2—-[3'22'2+ RR"Z'2-R'%zZ

L)
XY

(13) .

bko

z .22l 2
RR'Z2™+ 25 K% 2|
p 3
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—2 = & Rz"t + S [Ra'z'z”-na'zz"_ 2 g2z'z™| 2
oz P 2p° [¢]
239 = -2 (R"- L Rr")zt + EE-[R'R“-RR“\- 1 p12, 3 gp™ 3_ pR'[z7'42
p P P 292 p p <
. (13)
%o _ 1 - & Riz't + -l R'2-RR"™+ 1 RR'’ (z'%+ zz™)¢2
oz [ 2p2 P
apo aao a¢o a¢b a¢b
¢ 3% % % % & =1

On the other hand, if one plans to use (9) in computingqg, one
must calculate the derivatives axi/ax J from (12), and then elimin-

from the resulting expressions by means of substi-

ate p, and z

o)
tutions of the sort

%; = % - %3 RZ't
] | - Rlpy) = R(p)[l +'% R'{p)z' (z)t
which give the final result correct to terms in t2. One finds
g%- =1 - §((r'- 1 R)Z't + 93— [(R'Q-RR')(2'2+ZZ") -—lg Rgz?zjte
o 2p - e o

2
- & rz"t - & RR'(z2'z2"-z2")t%

2p%

. oFg
N
o
u
°

A A A N RTINS P e AP

< N

i o Uil o Al B A

- Mo,

” _.{ i

i s D)

T

Wiy

-
b

A S

I

y

Sgo =5 (K"- % R')Zt + ifg[nﬂ"'-n'a“f % R'Z ”
- 2 RR" + %5 RR ]ZZ't2
g%; =1+ZR'Z't + é;z (R'? + RR" - % RR'")(2'2 - zz")t?

Substituting from (13) into (8) and tsk ing the curl, or sub-

stituting
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from (14) into (9)(w1th Jd = 1 s8ince the flow is
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incompressible), one finds in the case of an initial poloidal field

(2) that the field as modified by the fluid motion is given by

Bp = =B sing//cos?{l a% (R' - -‘13 R)Z't

S

2
§ O {(R'z-Ra")(z'%zz“)- L Rgz'gjtz} (15a
. 2 & - P |

t')

~\

+ B cos ‘F{ Rz"t + 2—— RR'(2'2"™-22")t°]{ .
29

B =B sinxy sin<p{l - 9‘—2- RZ.'t

?
2 - _—.1 = ‘ (15b)
+ % [gr'zz". RR'2'2 + 2 R7Z' < ¥
. gpot P

B, = -B sinwy ccsf{% (R" - % R')zs

2

2 ni
+ —-—[RR -R' R ‘o
2p

1 12, 1 ppt, 1 oo
in pRR-f--:gRRJaZt}(Bc)

-B coswil+ S R'z't + L o® (R'2+RR"-1RR " )(Z '2-zz"t°
P 2P2 P
In the case of an initial toroidal field (4) one finds for

the final fileld

az 1 1 T
=B sin:pt -5 (E' - 5 R)Z't
o’z 12 2, o 2, 127.2
+ ) [(R -RR™) (27°+22" ) = <= R 2 Jt (16a)

- 2P

1
©
a? 2 “w 1 1,2
- £ R'Zt + =— (3R’ r-RP.u-ﬁRR')ZZt
g 2p y

By =8 cosw{z % RZ't + rRR t(zz".2'%)+ 32 5 R22'2't
? ' P
.2 (16b)
- 2 R'Zt + 12_RR" + 2 RR')z2'
5 R Zt -;2 (R'“~RR S )28+
o = O g s
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a2 1 2.2.2
= B sin @{. o= =m R‘)Zt —g'(R’R" ~ = R? )Z t
0 p
(16¢c)
2
az 1.2 1 1 2?
+ i [RR™ - RIR" + SRS - = RR" + i RR'| 221t J

If the diffusion process 1s slow in comparison with the
induction process (l.e. if v is sufficiently small in the region
2<0), then (15) and (16) already give a crude approximation to
the solution of eguation (1). Since Z(0) = O, it is apparent
that the field (16), produced by action of the fluid motion on the
initial torecidel field (4), is zero on the boundary z = 0. Thus
ths induction term V x (X.X‘E) in eyuation (1) is, by itself,
Incapable of causing the torolidal field to manifest itself outside
of the core,

The condition Z(0) = O dses not bring about such a marked
simplification in the field (15), which is produced by action of
the fluid motion on the iInitial poloidal field (2). A fecw terms
vanish in (15a) and (15b), and the first two lines of equation
(15c) disappear. In order to gain a certainlinsight into the

meaning of these formulas, let us compute the average values
By(r) = ( (nr®)"™ / / B P,0,0)pdpde (17)

of the Cartesian components By of B over a circle of radius r in

the plane z = 0, These are

4

B, =~ B siny + B siny - -g/ laszv(o)t
a© 2 i 1 2 242052 ) 5 "
= ga (Rf ~ RR" = E'RR' + ;g R jar (0)t dp (18a)
B =2¢ (18b)
y
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=)2-
B, =-Bcosy - 2B cosyp - ;§ /; {aR'Z7(O)t
5 : (18¢c)
+ “—5 (R + RR" - % RR')Z'z(O)t?'} de.
Thus By = b, + r %, (r), where b 1s the initial rield (2a) and

the quantities Ii(r) are the changes in the components of'Eadue
to the action of the fluid motion, integrated over a circle of
radius r about the origin in the plane z = O.

In the mantle (z 3> 0), the conductivity o 1is small and hence
we can seti/m = o0, approcximately. Then 1n this region_g\is a
solution of V2‘§A= 0, matching the field of the core at the boundary
z = 0 and reverting Lo the uniform poloidal field (2) at infinity.
A field whose average (17) 1s zero over every circle about the
origin in the planse z = 0O will vanish more rapidly as z — oo than
a field whose average is 1in general non-zero. In fact, it can be
shown* that Ii(oo) can be taken as a rough measure of the amount
of field which will penetrate to the surface of the mantle and

produce an observable variation in the field there:

[0 0]
I, =B siny { aR(00)21(0)t = a®212(0)¢2 /s pglegdp} flga}
Iy' =0 I(19b)
Iz = =2B cos {aR(oo)Z“('O)t} . (19c)

Here the conditions 2 and 4 (pp. 7-8) on R(p) have been used to

2implify and evaluate some of the integrals.

According tco this model, the east horizontal component of

B at the surface should not change appreciably, and to linear terms

*See Appendix A.
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in t the percentage clhange In the vertical component should be
twice that in the horlzontal component and should have opposite
sigri. .It should perhaps be emphasized that the above conclusions
have only been demonstrated in the approximetion in which cubilc

and higher terms 1n t are neglected, and in which the effects of

diffusion are ignored.

3. The Diffusion Problem.

The problem of computing tne effects of diffusion of a

magnetic field across a surface of discontinuity in o is in general

a formidable exercise in analysis. In this section we will give
this problem a precise formulation and attempt to draw some con-
clusions about the diffusion of the fields (15) and (15).

When v = O in (1), that equation reduces to the diffusion

equation

==V VB, E (20)

This equation is wvalid throughout any region where o = constant.
If o is a Tunction of position, an additional term 0" v x E
appears on the rights and if o is discontinuous at any point,
equation (1) is not valid at that point.

If o is constant throughcut space, the magnetic diffusion
problem can be solved by a method exactly analogous to that used
in the corresponding scalar diffusion problem (e,é° that of
conduction of heat in an infinite homogeneous medium). In this
case, the problem can be split into three independent diffusion

problems for the Cartesian components Bn of B. Using the method
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of Fourier transf‘orms*, one finds
z/o P = 2
B (r,t) = (4mvt)™"= / B (r?,0) exp [- (2 -x') ]dar’. (21)
A o D wt |~

3 (p - r')% 3 (r - p')?
*n { 4vt J ox ! P 4yt

and from V ¢ B(r',0) = 0, integrating by parts, one can show that
the vector field defined by (21) is solenoidal, V * B(r,t) = 0.
The same result follows directly from Eﬂg/'at = -VmV x (V x g).

The problem under cons ideration here is more intricate, as

o 1s discontinuous at the surface z = 0
o =gy forz<O0
o=20 for 2 > 0
Consequently,
v, =V = (/401)-1 for z< 0
Vg = @ for 22> 0

Hence in the region z 2> 0, B satisfies the equaticn V2§_\= 0. At

z = 0, equation (20) is not val td. According to the analogy with

scalar diffusion theory, one would seek to determine six functiions

B B of position and time, such that

xl* By19 le’ x2°’ Byz’ Bzz

B,(r,0) is the initial field in 2 < 0, Bo(r,0) is the initial field

in z > 0, the vector Ql(__r_:;t) satisfies equation (20) with ¥ =V

2g -
B, = 0

Since the diffusion equation does not hold

in the region z < 0O, and the vectorjé(;_,t) satisfies V

in the region z > O.

at o=
aAv &

= 0, the behavior of the functions gl, gz on the boundary

¥See Sneddon (1$51), chapter 5.
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must be determined from boundary conditions. There should be six
of these, as there are six functions to be determined.

In order to find these boundary conditions, one may first
nove that the behavior of the field at the boundary is certainly

determined by the fundamental eguations of electromagnetic theory

in a medium at rest:

VxE-=-23/3t, eV E=p (22a)
VxB=ewdE/3t trI, VB =0 {22b)
J = oE (22¢)
V.g+ap/at =o0. (224)

In diffusion theory, the boundary conditions are relations whizh
must be satisfied for t >0, but not necessarily for t = 0. When

t > 0, E and B and thelr time derivatives are certainly finite.

3

Hence it follows from (22b) that at z = 0, Llc vectc 1a con-

) tinuous: B, = B,. From the first equation of (22a), it follows
are continuous at z = 0, From the second equation
E,o = Byy = 1/e, where g 1s the surface density of charge
0. According to (22d), J,, - J, = - 91t/3t. Combining
these last two relations with the first equation of (22b), one
finds that (V¥ X‘Q)z is continuous at z = 0.

In the approximation usually used in hydromagnetic theory,
the displacement current €& 3E/ot 1s neglected in comparison with
the conduction current J. In this same approximm tion, the
quantity dt/dt = e(aEzz/at - aEzl/at) must also be neglected.

But then 1 may be regarded as constant in time, and the corrss-

ponding longitudinal part of E may be 3plit of{ and dlscarded.

The justification for thils procedure 1s that the longitudinal
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part of E will be a slowly veryling electric field, and hence will
have little effect on the magnetic field‘g. In this approximation,

Jz 1s continuous across the boundary. But in the region z > 0.

JL = 0 because o = 03; hence Jz = Ez = 0at z = 0.
The preceding discussion has established the six boundary
conditions
Bxl = BXZ’ Byl = By2’ le = 822
\ (23)
Exl T Pxov Eyl - EY2’ Ez = (Vx B, =0

Irn. order tc employ these conditions in the solution of the mag-
netic diffusion problem in the form outlinecd above, it would be
necessary to express them in tLerms of,§1,‘§2, and the derivatives
of these vector=a. However, this is not possible for the conditions
on EX and Ey’ because (22b) and (22c) give the only direct relation
betweenlg‘and the derivatives of‘g, and this relation breaks down
in the region z > 0, where o = O.

Here appears the essential complicating distinction between
magnetic and scalar diffusion problems. The boundary conditions
of the magnetic problem may each lnvolve several components of
B, as in a condition on V x B; as a consequence, the problem
cannot generally be split into three independent problems for the

Cartesian comyrments. Moreover, the boundary conditions zare

conditions on the electromagnetic fleld which camnot be reduced

to conditions on the magnetic field alone.
This last difficulty, however, can be clrcumvented in a
simple way; if the problem is formuiated in terms of the po-

tentials rather than the field intensities, one can express all
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of the boundary conditions in terms of the same dependert variables
that appear in the diffusion equation. As mentionsd ahove, if the
displacement current 1s neglected (as 1s always done in hydro-
magnetism), then the guantity 3%T/dt must also be neglected, and

the longitudinal component of E due tc = comstant surface charge

v can be s8plit off aund discarded. Then the field intensities éan

be represented in terms of the vector potential A,

B=V=xA, E-=-34/d (24)
where
v+ A=oO. (25)

Then all the equatiorns (22) are satisfied identically (with

p = 0 everywhere) except the first equation of (22b), which becomes

A, _ 2
s " vmv‘é. (26)

Since B is finite, it follows from the first equation of (24) and

rrom (25) that

=LA A, = AL, (27a)

vyl y2e’

The former boundary conditions (23) on B, namely B, = By, become
Vxa =V xA. (27b)

In view of the second equation (24), (27a) implies that E, and
Ey are continuous at the boundary. The remaining condition (23),

namely Ez = 0, becomes

oA,

=0 at z = 0. (27¢)
ot

We now have exactly six independent conditions on A.

Equation (27a) gives three conditions; (27t) gives only two more,
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since the continuity of A, and A_ implles the continuity of
& o
(V. x A) 3 and (27c) gives the sixth condition.

The fact that five of these six conditions are statements

of continuity means that it will be necessary to solve simultaneously

for the two vector fields A., A_, where A, (r,0) and A (r,0) are
] P a2 A e a2

given and

2

» V54, = 3A,/3t in z< O (28a)
v24, = 0 in z> 0 (26b)
and the boundary conditions (27) are zatisfied at z = O,

The solution of this problem can be obtalned by means of
the following procedure. According to (27c), Az(x,y,O) is not a

function of t. In the region z 4 0 we may set
A, (r,t) = ulr) + vir,t), (29)

where v(x,y,0,t) = 0. Then

u =0, 9—%=vvzv.

4

The solution of this diffusion problem for v is known from the

theory of heat conduction (semi-infinte region, temperature zero

on the boundary). It is

2 2

: - 4yt - 4yt

vgﬂpt) = (éth)°5/2 ‘/59,/'o v(rt,0)le gl /4 -8 ié /&7 a7r' (30)
= = 2 SR

where

€2 = (x=x)% + (y-31)® + (z-21)"

§22 = (x-x')2 + (y-y')2 + (z+z')2.

fz = (x-x7)% + (y-y1)© + 2%,
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Then according to equaticnm (1) of Appendix A, the fieid u(r)
in the region z £ 0 is given by
Z R, =3
u = = o5 //g Az(x',y',O,O)dx'dy' (21)
-0
and the field A,, in the region z >0 is given by
Z L, -3
Az2 =ﬁ{éf Az(x',y',C,O)dx'dy' (32)

The field AZ is now determined throughout space by equations
(29), (30), (31), and (32).

The problem of determining A and Ay is more difficult,
because of the nature of the boundary conditions on these
quantities., According to equation (1) of Appendix & and the
boundary conditions (27a), A_ and Ay can be represented in the

X

region 7 > 0 by

z o0 -3
Ax2 = ﬁ{éf Axl x',y',0,t)dx'dy"
(33)
(x',y',0,t)dxtdy".

>
l
t\)IN
A
N
“
&
>

The remaining boundary conditions, which state that BAx/B; and
BAy,/az ire continuous at the boundary, must now be us'éd to obtain
the sulution in the region z < 0. This problem can be [formulated
most simply in terms of Green's function, which is here defined
as the rield G(x,y,z3 x?'.y',2'3 t) at the point (x',y'z) at time
t due tc an instantuneous point source of unit strength generated
at the point (x,y,z) at time zero. It is assumed that z,z2'< O,
that the field in the region z< 0 at t = 0 18 zero everywhere

except at (x',y',2z') and that the boundary conditions are
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satisfied at z = 0. Then one can show* that the field at the point
(x,y,2z) at time t due to an initial field Ax(x',y',z',O) at time

zero 1s given by

0 0
Ay (x,5,2,t) = /7'/'Axl(x',y',z',O)G(x,y,z;x',y',z';t)dx'dy'dz'. (34)
-3 =

Thus if one can determinc Creen's function G for the problem, (34)

gives the soluticn in the region z< 0 for an arbitrary initial

field Axl(x'yy',z',o). Once this field 1is known, the field in

the region z > 0 is determined by (33).
If G(x,y,z,t) 1is any soluticn in the region z < O of the

A

diffusion equation and the boundary conditions on Ay, and Ay
(in particular. it may be the Green's function), then G(x,y,0,t)
is the field cn the boundary. Substituting into (33) and applying

the boundary ccndition on 3G/oz, we obtain

@
aG] 1 ) z G(x",y",0 t) 1 n =
o == 1lim = // s , dx"dy". (35)
2,20 2N ;50 oz -a>[(x-x")2 + (y-y")2 + 22}3/8

The avuvthor has not T succsed in determining a Green's function

:)T
which satisfies (35) in the general three-dimensional case.
There i1s one special case in which the entire problem can

be solved with ease: the case in which Ax and Ay are functions

of z only. Then in eguations (33), the quantities Axl and Ayl
can be brought out from under the integral signs and the integrations
canbe performed explicitly. The results are that A,, and Ay2 are

independent of positicn in the region z 2> 0. Thus an/az and

dA_/3z are zero at z = 0, and in the region z< O the diffusion

-3
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rroblem for Ax and Ay is formally exactly analogous to the problem
of heat conducition in a semi-infinite medium with the adiabatic
boundary condition. The solution for A1 18 thus

~(z=-21)2/4yt -(z+z')2/4vt]

o}
A, = (4nvt)'1/2 S A_{z',0) |e + e
1 o O x

- dz!',

and Ayl is given by a similar eguation.

A slightly different approaech tc the general (three-
dimensional) problem is obtained if it is assumed that )/1, and
V, are both finite, but that v,>> v,. The boundary conditions
(27) remain exactly the same. All components of A and V x A are
continuous across the boundary. From the electromagnetic eguations
(22), one finds that (V x B), must be continuous, and hence that
vl aAz/at must be continuous across the boundary. Bat A  itself
is continuous, so that (unless Vi, = )/2) one can conclude that
aAz/at = 0, as before. Now the diffusion equation is satisfied
both below and a bove the boundary (but with different values of V),
so that both filelds ;’}_1 and A, can be reprsssntcd In terms of
Green's functions. It may prove to be an advantage to have
functions of the same type on both sides of the boundary.

In the composite medium with finite V¥,, the boundary

conditions can alsuv be stated in terms of E rather than of ,5.:

They are
.91 = .§2
Vl(V X Bl)x = VZFV X B2)x’ Vl(V X Bl)y = V2(V x~l_3,e)y
(v x-Bl)z = (V xgz)z = 0.
T SRR
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(The last of these holds in the arproximation used here, in which
E_ is assumed to be continuous at z = 0.) In the limit Vo —» o,
the conditlons on (V x B), and (V .‘:__._’.3.).‘7 in their present form give
nc information aboutj@l. However, these conditlions can be trans-
formed in this case into conditions somewhat resemoling (35). In
the regiciu z > O, these conditions state that when vz = o,

Vx B, =0, and hence‘gg = VV. DNow since B22 = 3V/oz is given on

2
the boundary, V is determined throughout the regicn z > 0O by*

1 ,F,-1 :
V=-zz//¢ B, x,y,0)dxray’.
-

2

g) = V(x,y,0) By (x,5,0,8) = SV(x,y,0)

Bxl(xfy;o ax oy

are the required conditions. It should be noted that here the
various components of B are very much mixed together in the
boundary conditicns. One great advantage of the formulation
based on the vector potential is that 1t proves possible to

separate the problem into thrse inderendent diffusion problems

for Ax’ Ay’ Az.

It is possible to extend the preceding results of this
section to the case of a spherical boundary between the two media.
The boundary conditlions on A are that 4 and V x & are continuous
across the boundary, and that the normal component aAr/at =0
at the boundary r = a. The rield V%gz =0 for r > a can be
expressed in terms of the field on the surface by means of

integrals similar to equation (1) of Appendix A; see the same

*Jeffreys (1950), p. 221.
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reference to Jeffreys. The fileld A} can be determined by a method
similar to that used 1n the cise of Az with a plane boundary;

the solution of the diffusion proctlem in the interior of the
sphere with v = 0 on the surface is very much more complicatsd
than the corresponding solution in a semi-infinite region, but

it is given in the literature .

¥*Carslaw and Jaeger (1947), pp. 210-212.
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Arpendix A: Solution of Laplace's Equation in a

Semi-infinite Regicn.

In the case of the semi-infinite region z > 0, the well-

known Integral
£(x,y,2) =%,—tfé/[% Vf - £V %J . ds,

#
of Laplace's equation can be transformed into the expression

! <! 1 ? 9
%ﬁ /7 f(x',v' 0)dx'dy , (A1)

f(x,y -
sY 52 [(X-u&'lz + (y-y‘)2 + ZJJ3/2

which gives the values of the harmonic function f throughout z > O

P I =S

in terms of 1%s values on the plgne z = 0.

One application of this formula is the jvstification of the
use of eguations (19) tc epproximate the field at the surface of
the mantle due to an urwellling at the surface of the core. Wwe
can split the total field B into the constant (initial) field b
and a variable field E.produced by the action of the fiuid motion

on‘E: We assume that the upwelling 1s sufficiently well localized

that the improper integrals

4V]

1 F°F
I, = S S Bylps 9 ,0)pdpde (A2)
o o
exist. (This will be the case, for instance. if condition 4,
p. 8, on R(p) is satisfied.) Now the variable field at the
surface of the mantle is given by (Al) with Bi(x,y,z) substituted
for f(x,y,z)s here z 1is regarded as representing the height of the

surface of the mantle atove that of the core. A representative

*A proof is given in Jeffreys (1950), p. 221.
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Multiplying equation (
$ 3(8%)/3t = B - Lv x

The first term on the right c¢

-26 =

1) by B, one obtains

(.‘Lx..?.)]""’m?»-' [Vx (v XE)}. (B1

an be transform2d using vector

identities in the follcwing way?

[Fxxx®]=5"

Let

Then

[V X (X.X.Q)] =B
The secornd term on the

as follcws?

B - [vx (vxB) |

Thc last term can bs writteuwn

oB.; oBy

v . [(Ee V),E}zﬁ?lﬁ—=

AR

Selecting the last of

we find
a B v,

Here d/dt = 8/8t + v *+ Y. In

-

1 2 B = &
avl/ax1 =—2-l‘ V(E) —E (J »\‘{‘/.
ov ov
Ha e ) 52
)3 5 i

Lo o2 2
- F Yy VBT - VBT

1B3V1y

right in (Bl) can be transformed

[gx (Vv xB) |- (vxB)®
. AN

v
19282 - (vxB)2 - v-[B" v)B].

in various forms:

-2

3°(B,B,) oB, oB -
EX“‘éxjf = ax% Bxi - (V x,g)c‘
i J Cd

these, and substituting 1nto (B1),

oB

2 i i
B+ vV, V() = "
ii~ ax, 2x
S I |

troducing the magnetic stress tensor

(Bi g =

- .';"’\_ : 'j!"—
wa N r

PR

W3 i

% B%, ;) (B3)
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value of the field at the surface can be obtained by setting

X =y =0 in (Al)s; the corresponding value B.(0,0,z) 1s thn field

fo

t that point on the surfacc of the mantle which is directly above
the center of the upwelling in the ccre. This value can be

expressed in the form

@ 27

B1(0,0,2) = L / / 8, (p,p,0) (pZ+22)3/2
o O

papde. (A3)

i Now B;(0,0,2z) is certainly finite. Hence there is a distance c

i such that "most" of the field B,(0,0,z) comes from sources lying
within a circle of radius c abcut the origin in the plane z = 0.
This quantity c¢ could be regarded as the '"radius of the upwelling,"
sz Far as its magnetic effects are concerned. If we now make the
additional assumption that z 1is larger than c, we can (in a very

4 crude approximation) neglect the term p2 in the denominator of

(A3). We then obtain
o c 2n

{ ; 1 1
! (0,0,2)~ —=—s (p,@.d)pdpdp~ — I.. (A4)
! ’i} Bi & 21[25' ‘é‘ 'o/.Bi p¢, (P 22.4 i

Supplement ¢ Diffusicn-Induction Equation for
v the Energy Density.

In scalar diffusion theory, there 1s often available a

3

! conservation principle which may ue ol some use in predicting or
visualizing the course of the diffusion process. In me-netic

diffusion theory there is no field quantity which i1s actually

conserved, but one can write the differential equation for the

£
A

&
o
al
b
b/
P~
"
P4
o
‘.‘

energy density‘§2/2;< in the form of a diffusion equaticn with a

loss term.
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an reduce this expressicn to the slightly more symmetrical form
d(Bz\::T v,, =V @2> +y vZG‘:) N s N O
at\Bz, 1113 11l\zZz m 2k ST TIN
The first two terms represent energy transfer from the fluid
motion to the field. The guantity Vii is simply V * Vv, S0 that
if the fluild is incompressible the entire contribution of motional
induction is contained in the 3scalar product Tijvij of the magnetic
stress tensor (B3) and ithe strain tensor (B2) of the fiuid motion.
If the fluid is at rest, the first two terms on the right
in {84) vanich, the symbol d4/dt on the left reverts to 3/8t, and
the equation reduces to a dii'fusion equaticn for”§2/2f< with a
loss term =(vm/u)(aBi/axJ)(aBi/axj),
Under some circumstanccs, the flux of B through a surface
may be ccnserved during diffusion of the field. If one can somehow
establish, without first solving the entire diffusion rroblem, that

for some specified curve C the right sides of the equation

o~

%égods =¢'ym%‘ (v xg) 0%

will remain zero during a given time interval, then one can

conclude that the flux through the corresponding surface S will

remain constant during that interval.
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Hrmed Services lechnical Information Agency
Because of our limited ’su;;ply, you are requested to return this copy WHEN IT HAS SERVED

YOUR PURPOCSE so that it may be made available to other requesters. Your cooperation
will be appreciated. '
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NOTICE: WHEN GOVERNMENT CR OTHER DRAWINGS, SPECIFICATIONS OR OTHER DAT A
ARE USED FOR ANY PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY RELATED
GOVERNMENT PROCUREMENT OPERATION, THE U. S. GOVERNMENT THEREBY INCURS
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GOVERNMENT MAY HAVE FORMULATED, FURNISHED, OR IN ANY WAY SUPPLIED THE
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